Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[Chlorobis(p-chlorophenyl)(p-tolyl)tin]- $\mu-1,2-$ bis(diphenylphosphoryl)ethane- $\kappa^{2} O: O^{\prime}-$ [bromobis(p-chlorophenyl)(p-tolyl)tin]

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in main residue
R factor $=0.054$
$w R$ factor $=0.114$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title complex, $\left[\mathrm{Sn}_{2} \mathrm{BrCl}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{4}-\right.$ $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}_{2}\right)$, the 1,2-bis(diphenylphosphoryl)ethane ligand coordinates to a bromobis(p-chlorophenyl)(p-tolyl)tin molecule and also to a chlorobis(p-chlorophenyl)(p-tolyl)tin molecule across a center of inversion, involving disorder of Cl and Br . The Sn atoms are five-coordinate in a trans$\mathrm{C}_{3} \mathrm{SnO} X$ geometry.

Comment

Triphenylphosphine oxide forms a large number of adducts with triorganotin Lewis acceptors (Lo et al., 2001). The bidentate 1,2-bis(diphenylphosphoryl)ethane ligand does not chelate to triphenyltin chloride but instead binds through its double-bond O atoms to two of the Lewis acid molecules (Pelizzi \& Pelizzi, 1980). The adduct is centrosymmetric, the center of symmetry being in the middle of the methylenemethylene linkage. A similar centrosymmetric arrangement is found in the mixed bis(4-chlorophenyl)(4-tolyl)bromotin complex (Wei et al., 1990), as well as in the title complex, (I) (Fig. 1). Selected bond distances and angles are given in Table 1. The Sn atom is five-coordinate in a trans $-\mathrm{C}_{3} \mathrm{SnOX}$ trigonal bipyramidal geometry. The $1 / 1$ adduct of the ligand with butylphenyltin dichloride is also disordered over an inversion site (Ng \& Kumar Das, 1996).

Experimental

$\operatorname{Bis}(p$-chlorophenyl)di- p-tolyltin was prepared by the reaction of p-tolylmagnesium bromide and bis(p-chlorophenyl)tin dichloride in THF; the organotin reagent was itself prepared from another reaction between tetra(p-chlorophenyltin) ($\mathrm{Ng}, 1997$) and stannic chloride. One of the p-tolyl rings was cleaved by using hydrochloric acid to form the mixed $\operatorname{bis}(p$-chlorophenyl) $(p$-tolyl)tin chloride. The reagent $(0.5 \mathrm{~g}, \quad 1 \mathrm{mmol})$ and 1,2-bis(diphenylphosphoryl)ethane $(0.4 \mathrm{~g}$, $1 \mathrm{mmol})$ were each dissolved in ethanol and the two solutions mixed. The compound that separated was collected and recrystallized from chloroform. The molecule of bis $(p$-chlorophenyl) (p-tolyl)tin bromide in the crystal structure could have arisen from reaction between

Received 21 April 2004 Accepted 27 April 2004 Online 8 May 2004
p-tolylmagnesium bromide and bis(p-chlorophenyl)tin dichloride, which could give this compound as a minor product. The compound was probably not removed in the subsequent steps.

Crystal data

$\left[\mathrm{Sn}_{2} \mathrm{BrCl}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{4}{ }^{-}\right.$
$\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}_{2}\right)$]
$M_{r}=1411.55$
Monoclinic, $P 2_{\mathrm{f}} / n$
$a=12.324$ (3) A
$b=12.842$ (3) \AA
$c=19.975$ (4) \AA
$\beta=107.54(3)^{\circ}$
$V=3014.4(13) \AA^{3}$
$Z=2$
Data collection
Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$\quad T_{\min }=0.744, T_{\max }=0.835$
5574 measured reflections
5308 independent reflections
3325 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.033 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-14 \rightarrow 0 \\
& k=0 \rightarrow 15 \\
& l=-22 \rightarrow 23 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0381 P)^{2}\right.$ $+3.4106 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.60 \mathrm{e}^{-3}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.114$
$S=1.04$
5308 reflections
294 parameters
H -atom parameters constrained
$D_{x}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=10.0-13.4^{\circ}$
$\mu=1.81 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Block, colorless
$0.15 \times 0.15 \times 0.10 \mathrm{~mm}$

Figure 1
ORTEPII (Johnson, 1976) plot of the title complex (I), showing the atomnumbering scheme and displacement ellipsoids at the 50% probability level. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

The $\mathrm{Cl}-\mathrm{C}_{\text {aryl }}\left[1.740\right.$ (5) \AA] and $\mathrm{CH}_{3}-\mathrm{C}_{\text {aryl }}[1.540$ (5) \AA] distances were also restrained, more tightly. For each ring, the atoms were restrained to lie in a plane within $0.01 \AA$. For each methyl group, the distances of the methyl C atom to the ring C atom two bonds apart were restrained to be equal.

All the aromatic rings were refined as rigid hexagons $(\mathrm{C}-\mathrm{C}=$ $1.39 \AA$). The H atoms were placed at calculated positions [phenyl $\mathrm{C}-$ $\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$; methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}=$ $1.2 U_{\text {eq }}(\mathrm{C})$; methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C})$], and were included in the refinement in the riding-model approximation. The torsion angle of the methyl groups was refined.

Data collection: CAD-4/PC (Kretschmar, 1994); cell refinement: CAD-4 VAX/PC Fortran System (Enraf-Nonius, 1988); data reduction: XCAD4 (Harms, 1997) in WinGX (Farrugia, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science, Technology \& the Environment (IRPA 09-02-03-0100 EA100) and the University of Malaya for supporting this work.

References

Enraf-Nonius (1988). CAD-4 VAX/PC Fortran System. Operator's Guide to the Enraf-Nonius CAD-4 Diffractometer Hardware, its Software and the Operating System. Enraf-Nonius, Scientific Instruments Division, PO Box 483, 2600 AL Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. (1997). XCAD4. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kretschmar, M. (1994). CAD-4/PC. Version 1.5c. University of Tübingen, Germany.
Lo, K. M., Ibrahim, A. R., Chantrapromma, S., Fun, H.-K. \& Ng, S. W. (2001). Main Group Met. Chem. 24, 359-362.

Ng, S. W. (1995). Acta Cryst. C51, 2563-2565.
Ng, S. W. (1997). Acta Cryst. C53, 273-274.
Ng, S. W. \& Kumar Das, V. G. (1992). Acta Cryst. C48, 1839-1841.
Ng, S. W. \& Kumar Das, V. G. (1996). Acta Cryst. C52, 1367-1369.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pelizzi, C. \& Pelizzi, G. (1980). J. Organomet. Chem. 202, 411-419.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wei, C., Kong, N. W., Kumar Das, V. G., Jameson, G. B. \& Butcher, R. J. (1990). Acta Cryst. C46, 2034-2036.

